Self-Assembly of a Functional Oligo(Aniline)-Based Amphiphile into Helical Conductive Nanowires
نویسندگان
چکیده
A tetra(aniline)-based cationic amphiphile, TANI-NHC(O)C5H10N(CH3)3(+)Br(-) (TANI-PTAB) was synthesized, and its emeraldine base (EB) state was found to self-assemble into nanowires in aqueous solution. The observed self-assembly is described by an isodesmic model, as shown by temperature-dependent UV-vis investigations. Linear dichroism (LD) studies, combined with computational modeling using time-dependent density functional theory (TD-DFT), suggests that TANI-PTAB molecules are ordered in an antiparallel arrangement within nanowires, with the long axis of TANI-PTAB arranged perpendicular to the nanowire long axis. Addition of either S- or R- camphorsulfonic acid (CSA) to TANI-PTAB converted TANI to the emeraldine salt (ES), which retained the ability to form nanowires. Acid doping of TANI-PTAB had a profound effect on the nanowire morphology, as the CSA counterions' chirality translated into helical twisting of the nanowires, as observed by circular dichroism (CD). Finally, the electrical conductivity of CSA-doped helical nanowire thin films processed from aqueous solution was 2.7 mS cm(-1). The conductivity, control over self-assembled 1D structure and water-solubility demonstrate these materials' promise as processable and addressable functional materials for molecular electronics, redox-controlled materials and sensing.
منابع مشابه
Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids
The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved...
متن کاملNanofibers from self-assembly of an aromatic facial amphiphile with oligo(ethylene oxide) dendrons.
Novel block facial amphiphiles consisting of a laterally extended aromatic segment and oligo(ethylene oxide) dendrons as a flexible segment were synthesized in a stepwise fashion and their aggregation behavior was investigated in aqueous solution; self-assembly into elongated nanofibers with a uniform diameter of 7 +/- 0.5 nm and lengths up to several hundred nanometers was observed.
متن کاملExploring Redox States, Doping and Ordering of Electroactive Star‐Shaped Oligo(aniline)s
We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical c...
متن کاملSelf-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene.
Self-assembly of a Gemini-shaped, chiral amphiphilic hexa-peri-hexabenzocoronene having two chiral oxyalkylene side chains, along with two lipophilic side chains, yields graphitic nanotubes with one-handed helical chirality. The nanotubes are characterized by an extremely high aspect ratio of >1,000 and have a uniform diameter of 20 nm and a wall thickness of 3 nm. The nanotubes with right- and...
متن کاملMolecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses
Molecular self-assembly offers unique directions for the fabrication of novel supramolecular structures and advanced materials. The inspiration for the development of such structures is often derived from self-assembling modules in biology, as natural systems form complex structures from simple building blocks such as amino acids, nucleic acids and lipids. Peptide-based nanostructures indicate ...
متن کامل